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AbsIraeL In this paper we discuss the critiral behaviour of two-dimensional vesicles with 
osmotic p r w u q  but no bending energy, in the presence of an attractive boundaly. 
The phase diagram is presented for the 6 n t  time and exponents are calculated in the 
various regions of the phase diagram from an exact enumeration in conjunction with 
series analysis techniques. In particular special surface critical exponents are presented 
for the branched polymer phase. 

1. Introduction 

Membranes often occur in nature as vesicles [I], that is closed surfaces isomorphic 
to the sphere. A good example of such a surface is the red blood cell 121. A 
red blood cell is essentially composed of a membrane formed by a lipid bilayer of 
amphiphilic molecules. Each of these molecules has a hydrophilic head and one or 
more hydrophobic tails. In order to avoid contact between the tails and water in the 
blood, the molecules align themselves into two layers; the tails inside and the heads 
outside. These layers create a surface, which then closes on itself to form the vesicles. 

From a chemical and biological standpoint it is important to know what other 
substances are contained within the vesicle, but from a physical point of view it is 
their configurational properties which are of interest. It is well known that under 
different physical and chemical conditions their average shapes differ widely [1,3,4]. 
The understanding of these morphologies, and their fluctuations, is an important 
aspect of the study of vesicles in the field of statistical mechanics. 

The most relevant physical parameters in determining the structure of vesicles are 
expected to be the osmotic pressure difference between the inside and outside [3], 
and the rigidity of the membrane 1.51. The first effect arises because the membrane 
which forms the vesicles is semi-permeable, and the molecules from the surrounding 
fluid may diffuse across it via a process of osmosis, which sets up a pressure difference 

AP = Pint - Pud. (1) 

This pressure difference may be positive or negative. 
Given the complexity of the behaviour of vesicles in three dimensions [4,6,7], 

much of the currenf research is on two-dimensional models of closed rings 
incorporating the parameters discussed. Here there are a number of results, both 
numerical and analytical. 
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In the absence of rigidity, Monte Carlo studies [SI and, more recently, exact results 
[9, IO], have shown that two-dimensional vesicles in the bulk show three distinct types 
of behaviour, depending on the pressure difference: 

1. For A p  < 0 the vesicles are deflated, and appear to have the same critical 
behaviour as branched polymers. 

2. For Ap = 0 the models reduce to those for a self-avoiding ring, with the 
associated critical behaviour. The vesicles are then said to be flaccid. 

3. For A p  > 0 the vesicles are inflated, adopting in continuum models a spherical 
geometry. For models on a lattice they take the configurations with maximal area, 
the shape of which depends on the lattice. It will be shown later that, in terms of 
the critical behaviour, this phase is pathological. 

While there have been a number of studies of the effect of osmotic pressure 
in two-dimensional vesicles, few results are available when an attractive surface is 
included [II, 121. 'RI date the study of vesicles in the presence of a surface has focused 
on the shape of the vesicle when the rigidity plays a significant role. Instead in this 
paper we shall be interested in the critical behaviour of two-dimensional vesicles 
with an osmotic pressure difference in the presence of an attractive boundary in the 
limit where the bending energy is negligible and in particular in the determination 
of critical exponents in different regions of the phase diagram. The vesicle interacts 
with the surface through a short ranged potential. When this interaction is small the 
vesicle is unbound, with a vanishing fraction of its perimeter touching the boundary, 
and displays bulk type behaviour. Above a critical interaction strength the vesicle 
undergoes a binding transition to a phase where the fraction of the vesicle's perimeter 
touching the boundaly becomes finite. 

The remainder of this paper will be structured as follows. In section 2 we 
introduce the model studied, then in section 3 we discuss the exact enumeration 
method used to generate the data from which the main results of this paper are 
derived. In section 4 we present the phase diagram for this model and discuss its 
features, in section 5 we present results for the critical exponents both at the ordinary 
and special transitions for different values of the osmotic pressure difference and in 
section 6 we make some concluding remarks. 

2. The model 

We model vesicles by polygons on a semi-infinite square lattice. A polygon of 
perimeter N is simply a closed self-avoiding ring. The osmotic pressure difference 
between the interior and exterior of the vesicle gives rise to an energy of the form 

Ep = -ApA (2) 

where A is the area enclosed. The polygon is allowed to gain an energy, IC, for every 
step on the surface which bounds the semi-infinite plane. This is shown in figure 1. 

To study the critical behaviour of this model, we introduce a grand canonical 
partition function, given by 
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Figure 1. A latlice polygon: the heavy dotled line 
indicates the surface, while the shaded region shows 
the enclosed area. Here N = 46, Ns = 5 and 
A = 42. 

where N is the perimeter of the ring, N ,  is the number of steps in the surface, 
w is the step fugacity, K = exp(-IC/lC,T) and T = exp(Ap/kBT). The sum is 
carried out over all possible 'unrooted' ring configurations, that is ring configurations 
which are identical modulo translation, with the constraint that at least one of the 
steps must lie on the surface. The thermodynamic limit corresponds to N diverging. 
The average length is controlled by the step fugacity, w, and the divergence of the 
length defines a critical value of w as a function of K and T, w , ( K ,  7). The average 
perimeter of the ring, ( N ) ,  and the average number of contacts with the surface, 
( N s ) ,  are given in the usual way by 

The canonical partition function for polygons of length N with at least one step 
on the boundary, C$(K,T ) ,  is defined by 

Ns"" Am, 

c $ ( K , T ) =  C N , N , , A  K N S T A  (6)  
Ns=l A=A.in 

where CN,Ns,A is the number of configurations of perimeter N ,  area A and with Ns 
contacts with the surface. N F  is the largest number of contacts with the wall for 
a polygon of length N ,  that is N," = ( N  - 2 ) / 2 .  A,, and A,, are the smallest 
and largest areas for a polygon of length N ,  and are given by Ami, = ( N  - 2 ) / 2 ,  
and A,, = N Z / 1 6  if N I 2  is even or A,, = ( N Z  - 4) /16  otherwise. 

The number of unrooted ring configurations of length N on the square lattice 
without surface or osmotic pressure is known to behave asymptotically as [13] 

C, - (7) 

defining the hulk exponent a. 
asymptotically by a similar expression 

We expect that C,(K,T) will be governed 

We differentiate between as and a, since here the polygons are constrained to have 
at least one plaquette on the surface, and so as is a surface exponent which will in 
general differ from a. For K = 1, a! = a!' since the constraint of having one step 
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in contact with a surface does not change the allowed configurations with respect 
to the bulk, as the surface simply touches the lowest lying horizontal bond, that is 

D P Foster and F Sen0 

CN = C%(l , l ) .  
It is convenient to rewrite the partition function explicitly as 

m 
I 

2 = C $ ( K , T ) W N .  (9) 
N=U 

It is also of interest to consider the average radius of gyration, defined as the average 
distance of the sites visited by the perimeter from their common centre of gravity. 
The thermal average radius of gyration is then given by 

where R,,,,,,, is the sum of the radii of gyration for polygons of length N with Ns 
steps on the surface and area A. 
2 and (%) diverge as w + wc as follows 

2 - (w, - w)*-WS (11) 

(RG) - (w, -w)-” (12) 
where U is the usual correlation length exponent 

In the bulk it is possible to define a set of rooted polygons, that is rings constrained 
to pass through a specific point on the lattice. The number of rooted polygons is 
related to C ,  by 

(13) p o l e d  - - N C N .  

The situation is slightly different if the rooting point is fixed to a surface; in this case 
the ‘surface rooted’ configurations are related to the unrooted configurations with at 
least one step on the surface through 

C?N,,A = N s C N , N s 9 A  (14) 

CF = (N, )C;  (15) 

( N s )  - Nds (16) 

which, after summing over N, and A, gives 

where ‘SR’ indicates that the rings are ‘surface rooted’. 
The number of surface contacts scales asymptotically as [14] 

where +s is the surface crossover exponent In the part of the phase diagram where 
the vesicle is not adsorbed & = 0 and in the fully adsorbed phase & = 1. In general 
& will adopt a non-trivial value at the adsorption transition. From equations (S), 
(15) and (16) it is then clear that, for large N 

CF , w ; N N * s + d r - 3 ,  (17) 
A new exponent aSR is introduced, defined such that 

(18) CN” - wc - N  NorsR-3 
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3. Exact enumeration of vesicles 

In this section the exact enumeration for vesicles on a lattice with pressure and an 
adsorbing substrate is described. First it is appropriate to discuss briefly some of the 
previous exact enumeration studies of polygons on a lattice, so the work presented 
here may be better appreciated in its context. This discussion will be limited to the 
work on the square lattice. 

Guttmann and Enting [15] enumerated polygons up to 56 steps on the square 
lattice using a novel technique which allowed them to greatly reduce the rate at which 
the computational effort scales with the size of the rings considered. In this study 
they only considered the number of such rings, but none of the other quantities of 
interest in the problem of vesicles. In a later study Enting and Guttmann calculated 
the number of configurations of polygons of perimeter N and area A up to and 
including N = 42 [16]; later Guttmann added the data for N = 44 (unpublished). In 
order to achieve these values of N they chose not to consider the radius of gyration. 
Instead they calculated the ‘calliper size’ in a k e d  direction. The calliper size. is the 
linear distance spanned by the polygon in a chosen direction. This is expected to 
scale in the same way as the radius of gyration. 

It was shown by Privman and Rudnick [17] that the radius of gyration gives 
much better results for the determination of U. Calculating the radius of gyration 
for polygons up to N = 28 they obtained a d u e  of U = 0.750 =k 0.0015 compared 
with U = 0.753 0.007 proposed by Guttman and Enting from calliper sizes for 
polygons up to N = 54 [15]. Privman and Rudnick [17] restricted their attentions to 
counting the configurations of self-avoiding rings as a function of the perimeter, not 
considering the area. 

In this paper we calculate, for the first time, the coefficients C,,,,,, and R,,,,,, 
defined in equations (9) and (10). 

The approach adopted here is to build ring closure into the algorithm from 
the outset, avoiding the necessity to check for it. This is done by representing 
the configurations by two vectors, one containing information on the links in the I 
direction and the other on the y direction. Let these vectors be denoted X and 
Y respectively. The enumeration proceeds by considering polygons with N, steps 
parallel to the r direction, where N, must be even to allow for ring closure. Both 
X and Y are initialized with N, elements. The elements of X correspond, moving 
anticlockwise around the vesicle, to horizontal steps, taking the value + I  if the step 
is to the right and -1 if the step is to the left. The first element of X is set to +1 
to avoid double counting. The vector Y contains the vertical height jumped between 
the horizontal steps. The elements of Y may be positive, negative or zero, with 
the additional restrictions that the sum of the elements must be zero, and the the 
sum of the positive elements is half the remaining steps unaccounted for by X, that 
is ( N  - N,)/Z. If these constraints are imposed then all generated configurations 
are guaranteed to correspond to closed rings. As an example, the polygon shown in 
figure 2 is described by 

x = (+l,-l, t l . - l , - l , - l , - l ,  t l ,  + 1 , + 1 )  (19) 

Y = (+1,+1,+1,0,0,0,-2,-1,0,0). (20) 

The rings are then counted by enumerating, using a binary representation, all 
possible vectors X with an equal number of $1 and -1 elements. For each X all 
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Flgorc 2. A lattice polygon. X marks lhe rooting 
to the boundary. 

the consistent vectors Y are calculated. Local self-avoidance is easy to check for, it 
is simply necessary to ensure that the elements of Y which separate a +1 from a -1 
are different from 0. Global self-avoidance is more laborious, but essentially consists 
of checking that the loop does not return to the origin too early, and that no two 
steps lie on the same bond. The only trick here is to order the checking in such a way 
that as many similar loops as possible are discarded together. Suitable fine tuning of 
these checks reduced our CPU usage by more than 50%. Given a particular valid pair 
of vectors, X and Y, it is easy to calculate N,, A. The calculation of the coefficients 
for N = 32 required about one week of CPU time on a Sun SPARC station. 

Table 1. 'Table of coefficienls for r = 1, I( = 1. 

4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 

8 
66 

600 
5 164 

42 872 
346 828 

2754056 
21 549 780 

166 626 744 
1215865332 
9690096824 

73090383120 
548 064 459 968 

4088119617824 
30367415294800 

4 
33 

300 
2 582 

21436 
173414 

1 377 028 
10774890 
83313372 

637932666 

36545 191 560 
214032229984 

2 044359808912 
15 183707647400 

4845048 412 

1 
2 
7 

28 
124 
588 

2938 
15268 
81826 

449 572 
2521270 

14385376 
83 290 424 

488384528 
2895432660 

While the full table of coefficients is too long to be presented here, tables for 
C ~ ( K ,  r )  and R,(Ic. ,T)  are given for r = 0 and 1 at IC. = 1 and K = in tables 1- 
4t. These tables give the series from which the results for the pure branched polymer 
and self-avoiding ring limits, presented in section 4, are calculated. Results for 7 = 1 
are given in table 1, extending the results of Privman and Rudnick to N = 32 [17]. 

In tables 1 and 3 the coefficients C,(RG)N2,  C,(R,)NZ and C, are tabulated 
because they have integer values when 7 = n = 1. In tables 2 and 4 slightly different 
coefficients are presented, since C, vanishes for T = 0. The appropriate modification 
is to substitute C, by CE?,*-,, the number of branched polymer configurations of 

t The Cull table of coefficients is available on floppy disk by request. 
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Table 2. ?able of mefficients for r = 0, IC = 1. 

I305 

4 8 4 1 
6 66 33 2 
8 504 252 6 

10 3 170 1585 18 
12 17720 8 860 55 
14 93214 46 607 174 
16 469968 234984 566 
18 2282892 1141 446 1868 
20 10770040 5 385 020 6 237 
22 49679322 24 839 661 21050 
24 224921 256 112460628 71 666 
26 1002256080 501 128040 245696 
28 4 406005 560 2203002780 847317 
30 19 145 185020 9572592510 2937 116 
32 82 351 698 016 41 175 849008 10226574 

Table 3. ?able of coefficienls for r = 1, 6 = 2.05. 

N Cs(R$)NZ c;(R:)N? cs 
4 16.400000 8.200000 2.050 ow 
6 206.332500 87.022500 6.252500 
8 2 402682 000 991.257000 27372625 

10 25 109.359 656 10 139.695906 131.774256 
12 242875.428 642 97070.318 699 672.845375 
14 2231 030.034529 886724.941 119 3 598.469 871 
16 19 754961654 335 7826463,043 522 19946.151073 
18 170048 569.275293 67 230505.279 980 113565.047274 
20 1431244025.252075 565097587.963967 660291.931617 
22 11828976 194.066471 4 666 284579.6 13 015 3904886.687046 
24 96 304444458.703522 37 967 395 387.500 854 23419889.500 127 
26 774203298243.066 895 305 100796403.966553 142131 854.799 101 
28 6 157246268504.137 695 2 425 804 1407 19.424 805 871 307287.005438 
30 48 516247299 385.039062 19 110719306407.285 156 5387968162.548672 
32 379209199701 545.0WOOO 149354 179 954834.250 000 33 571 343916.596840 

N / 2  - 1 steps, corresponding to vesicle configurations of minimal area. The step 
fugacity calculated from this series is not W, but the step fugacity for the branched 
polymer, W ~ T .  As all the coefficients C, are zero, w 4 00, but the product W ~ T  is 
finite, and so the problem is still well behaved. 

4. The phase diagram 

In this section the phase diagram in the K-T plane is discussed, along with the method 
of its determination. The phase diagram is shown in figure 3. 

As the model studied demands that at least one step lie on the boundary, it is 
clear that when the vesicle is inflated, there will be a finite number of monomers in 
contaa with the surface for all values of K; it is therefore not sensible to discuss the 
surface behaviour for T > 1. For the remainder of this section we shall concentrate 
on the region T < 1. 
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Table 4. Pble of coeE3cienLs for T = 0, IC = 2.25. 

N Cg*-l(*)N2 C~&-@)N* C%-l 
4 18.000000 9.000000 2.250000 
6 241.312500 99562500 7.312500 
8 2450.250000 932.625000 28.265625 

10 19023,925781 6704.472656 102550781 
12 126 155.039062 41 944.394531 364.086914 
14 769813.200439 245713.519 775 1316559814 
16 4401 818.200 195 1361 919.520020 4792830 139 
18 23814729.411575 7 181 962.208267 17 398580 521 
20 123693937.005 157 36522611.612320 63 278.341 953 
22 622332445.970 189 180529 381.438 165 230801.723021 
24 3047534829.350086 870 818 668.657 625 842 818.749 478 
26 14587479 138,281060 4 114205441.927525 3080342.0(35214 
28 68 501 542315.455917 19099517 477.059547 11 269790.752239 
30 316 425477700.582520 87334308428331 284 41 269435.711 970 
32 1440815604974.533936 394088984 528.986816 151 239687.901 549 

Figure 3. The phase diagram 
in the K ,  r plane. The full 
curve corresponds to the transition 
between the bound and unbound 
phases X indicates the location of 
the adsorption transition for r = 
1. The dotled and broken curves 
correspond to lines of first-order 
transitions separating the bound 
and unbound phases, respectively, 
fmm the inflated phase. 

The difficulty in determining the phase diagram is the systematic identification 
of the critical value of the surface interaction, K J T ) .  It is known that wc is a 
constant as a function of K up to and including K , ( T )  [14]. This has been used to 
good effect as a method €or determining the adsorption transition in a number of 
related problems, such as the adsorption of self-avoiding walks [18,19] and branched 
polymers [20,21], where the adsorption transition is identified as the point at which 
wc begins to drop as K is increased. This procedure forms the basis of the method 
adopted here. The main difficulty with this method is the accurate determination 
of wC from the finite series of coefficients. The methods adopted here include the 
method of differential approximants [27.,23], Pad6 analysis [24] and the Gutrmann- 
Joyce recurrence method [25]. While the methods gave consistent results, the method 
of differential approximants was found to be more stable. 

Figure 4 shows wc plotted as a function of K for T = 1 calculated using the 
method of differential approximants. It is expected that the transition will be at 
the same point as for the self-avoiding walk, found by Guim and Burkhardt to be 
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i=1 c 

K = 2.044 f 0.002 1261. The location of the transition is found by determining 
where wc begins to fall significantly as a function of IC. Figure 4 is representative 
of the values given by the table of approximants. ?b correctly determine the errors 
associated with the localization of the transition it is necessary to consider also the 
spread of values given in the table of approximants. It is found that wc begins to 
drop at a value of K = 2.05 Jr 0.03, indicating that the transition occurs in the same 
place, within numerical errors. 

Numerically it is observed that the value of K required for adsorption decreases 
slowly as T is decreased for T < 1. While the series analysis results are quite stable 
at r = 1, they are very unsteady just below one. Figure 5 shows the plot of wc for 
T = 0.9. The quality of the plot is not as good as that in figure 4 because of the 
difficulty in assigning a single value to each point due to the instability of the table 
of differential approximants. The lack of precision in the evaluation of wc can be 
understood in terms of finite size effects. With a finite number of coefficients we 
might expect a strong influence of the self-avoiding ring k e d  point implying that as 
7 + 1, the stronger the influence of the adsorption k e d  point at T = 1 on the 
results becomes, giving a loss of accuracy, reflected in the increase of the error bars 
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0 . 2 1 5  
1=0 - 

/oIII , I.? 1.4 >.I 1.11 1 2 . 2  e.,  *.'. 2.8 I 
Figure 6. Plot of wBp against K 

for r = 0, where sb = w Z r .  
0 .24  

shown in figure 3. It is probable that the true phase boundary display a slight drop 
as a function of T and then fall sharply between IC = 0.9 and 1 .O giving a continuous 
line upto and including T = 1. The series obtained here is insulficient to verify this. 
Figure 6 shows the plot of wCBp for T = 0, where wBp = W ~ T .  The transition occurs at 
K = 2.25 f 0.05. These are consistent with results published recently by Lookman et 
a1 [Zl] who looked directly at the problem of the adsorption of a lattice tree to a 
surface using an identical method. 

5. The critical exponents 

Having determined the general shape of the phase diagram, it is now of interest 
to calculate the exponents defined in section 2 and determine how they vary in the 
different parts of the phase diagram. 

Setting K = 1 and T = 1, where the polygon behaves like a self-avoiding ring, 
and using the method of differential approximants, the exponents are found to be 

as = 0.50 i 0.03 

asR = 0.50 -+ 0.04 

(21) 

(22) 

(W U = 0.750 i 0.005 

in good agreement with previous reSults [27] and satisfy, to within numerical errors, 
the expected scaling relation a = 2 - 2u [14]. 

As T was reduced it was found that these exponents changed abruptly. In 
particular, when T = 0.9, we found 

as = 2.0 f 0.2 

a S R  = 2.0 f 0.2 

(24) 

(25) 

(26) U = 0.62 i 0.04. 

While these exponents are not as precise as those at T = 1, the do indicate a change 
in critical behaviour. This is particularly evident comparing a at the two points. It F 
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is believed that for T < 1 the critical behaviour should be dominated by a branched 
polymer b e d  point [3]. This is consistent with our findings here. For the branched 
polymer v = 0.64. . . [28,29], which compares well with our result. Additionally, in 
studies of branched polymers an exponent 0 is introduced [29], through 

C, - w l N N - ’  (27) 

which when compared with equation (11) gives 

S e = 3 - a .  

Our results imply that f3 = 1, which agrees with a known result for the branched 
polymer [29]. Strialy the 0 exponent defined here is a surface exponent which 
coincides with the usual definition of the bulk exponent when K = 1, it would 
therefore be appropriate to use Os to denote, in consistent manner, this fact. 

Comparing equations (16), (17) and (27) we obtain the relationship 

esR = es - +s (29) 

using notation consistent with that introduced section 2. In a recent paper De’Bell el 
al (201 derived the relation 

e , = e + i  (30) 

where 0, was deEned such that 0, = BSR + 1. This result is only valid in the ordinary 
regime where 0 = Os and +s = 0. Equation (29) provides the correct generalization 
of this equation to general IC. In terms of the a exponents this equation becomes 

a S R  = as + +S. (31) 

The agreement between our results and those known for the branched polymer 
improves rapidly as T decreases from one and the influence of the self-avoiding 
regime becomes less relevant In particular when T = 0 we find 

as = 1.99 * 0.02 

a S R  = 2.0 f 0.05 

(32) 

(33) 

(34) v = 0.645 + 0.007. 

Having verified that our model agrees with previous results for n = 1, it is now 
interesting to investigate the special surface exponents, that is the values of as and 
aSR at the adsorption transition. Because of the uncertainty in the determination of 
the location of the transition, the exponents could not be determined as accurately 
as at K = 1. The errors are calculated by looking at the values of the exponents at 
the best and worst estimates of K,. For T = 1 and n = 2.05 we find 

as = 1.3 f0.1 (35) 

C P  = 1.8 f 0.2 (36) 

& = 0.51 5 0.04. (37) 
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For r = 0 and K = 2.25 

as = 2.80 & 0.08 

a S R  = 3.4s f 0.08 

(38) 

(39) 

q5s = 0.64~0.1. (4.0) 

’lb the best of our knowledge these are the first reported values for exponents at the 
binding transition of a branched polymer phase (for d 2 3 see [7,30]). The exponents 
as and aSR calculated at the adsorption transition for the self-avoiding ring are also 
new and satisfy, to within numerical errors, the scaling relation as = 2 - Y [14] 
expected to hold for self-avoiding rings. In this case c # ~  agrees with the known exact 
value, q5s = 0.5, for the self-avoiding walk [31]. 

The results at r = 0.9 were very imprecise, due to both the increased inaccuracy 
in the determination of the phase boundary, and to instabilities in the series analysis 
techniques. It was found, however, that os = 2.8kO.S and aSR = 3.4~k0.5, implying 
that q5s = 0.6. These results are consistent with those found at r = 0. 

6. Conclusions and discussion 

In this paper we have studied the behaviour of a vesicle in the presence of a 
surface. When there is no interaction with the surface, our results support the 
picture presented in the literature, where a transition to branched polymer behaviour 
is expected when the pressure inside the vesicle becomes less than the pressure 
outside. 

Surface exponents, 01’ and aSR, were introduced and their values were calculated 
both in the ordinary and, for the first time, the special regimes. They are expected 
to coincide with the bulk exponent 01 when there is no interaction with the surface, 
but take on new values at the special surface transition. 

In equation (29) we have also presented a general relation between different 
surface exponents. This result correctly extends a relation recently presented by 
De’Bell er ai [20]. 

The numerical results presented in this paper were derived by performing an 
exact enumeration of all polygon configurations on the square lattice up to 32 steps, 
keeping track of the enclosed area and number of surface contacts. We extended 
the existing series for the radius of gyration for polygons in the bulk, presented by 
Privman and Rudnick [17], by two terms. 

A possible extension of the model presented here would be the introduction of a 
fugacity associated with the number of corners of the polygon in order to study the 
effect of rigidity on the adsorption behaviour. 
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